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Abstract. Prior to deployment, an object detector is trained on a dataset
compiled from a previous data collection campaign. However, the envi-
ronment in which the object detector is deployed will invariably evolve,
particularly in outdoor settings where changes in lighting, weather and
seasons will significantly affect the appearance of the scene and target
objects. It is almost impossible for all potential scenarios that the object
detector may come across to be present in a finite training dataset. This
necessitates continuous updates to the object detector to maintain sat-
isfactory performance. Test-time domain adaptation techniques enable
machine learning models to self-adapt based on the distributions of the
testing data. However, existing methods mainly focus on fully automated
adaptation, which makes sense for applications such as self-driving cars.
Despite the prevalence of fully automated approaches, in some applica-
tions such as surveillance, there is usually a human operator overseeing
the system’s operation. We propose to involve the operator in test-time
domain adaptation to raise the performance of object detection beyond
what is achievable by fully automated adaptation. To reduce manual ef-
fort, the proposed method only requires the operator to provide weak
labels, which are then used to guide the adaptation process. Further-
more, the proposed method can be performed in a streaming setting,
where each online sample is observed only once. We show that the pro-
posed method outperforms existing works, demonstrating a great benefit
of human-in-the-loop test-time domain adaptation. Our code is publicly
available at https://github.com/dzungdoan6/WSTTA
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1 Introduction

Object detection is a task that involves precisely localising and categorising ob-
jects within an image. It has many applications in autonomous driving [17],
surveillance [25], and augmented reality [21]. The deployment of an object de-
tector typically includes three main steps. Firstly, a large-scale dataset must be
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collected and annotated, providing the bounding boxes and object categories.
Next, this annotated dataset is used to train an object detector. Finally, the
object detector is deployed into a desired system to effectively perform real-time
object detection.
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Fig.1: (a) Previous works have focused on developing fully autonomous solutions,
primarily for self-driving vehicles [28,39,41] (b) Our approach, however, is proposed
for visual surveillance, which are typically monitored by an operator. Therefore, our
method will take advantage of the operator’s involvement in the adaptation process.
(¢) The definitions of full and weak labels: A full label includes bounding boxes and
object categories. A weak label only indicates which object categories are present in
the image. By only requiring weak labels, our method reduces the amount of labour
needed significantly.

However, while the training dataset is important for preparing an object de-
tector, it may not cover all possible scenarios that the detector may encounter
during its operation. This incomplete coverage is attributed to the various envi-
ronmental conditions that can arise, such as different times of day, weather, and
seasons. These factors cause the image appearance to differ from the training
dataset, leading to a significant decline in detection accuracy. A solution to the
problem is to continuously capture new data and adapt the system [9, 28, 41].
However, incorporating new data presents a substantial challenge due to the
absence of labels within this new data, making the adaptation of the object
detector a challenging task.

A potential solution for this issue is unsupervised domain adaptation (UDA) [5,
23,34], which formulates the training dataset as the source domain and the newly
acquired data as the target domain. The goal of UDA is to minimise the do-
main discrepancy in the feature space. Popular UDA methods include adversar-
ial learning [5,6,31], optimal transport [20,43], and pseudo-labelling [23,27,34].
However, a limitation of UDA is the offline setting: target data has to be acquired
first before adapting the model for multiple epochs, whereas many practical ap-
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plications necessitate domain adaptation to be done online. In addition, UDA
requires complete access to the source domain, raising serious privacy and secu-
rity concerns. Recent reverse engineering techniques have demonstrated that it
is possible to use a limited amount of information about the data to fully recover
the original data [11,26,32]. In data-driven approaches, data can be viewed as a
vital asset of businesses; thus storing source data in deployed systems is indeed
a hazardous undertaking.

To address the issues of UDA, test-time domain adapation (TTA) attempts to
adapt the model to the target domain without the need for the source dataset |28,
39,41]. Recent studies have demonstrated that TTA can be highly effective in
image classification by adapting the model with pseudo-labelling and entropy
minimisation [4,39]. However, TTA requires full access to the target data while
in practice, the target data is usually in the form of stream, resulting in the
target distribution continually evolving. To address this challenge, CoTTA [41]
and DUA [28] have been proposed. These methods only require an incoming
target sample to adapt the model, making them suitable for online adaptation.
The effectiveness of CoTTA has been demonstrated in image classification and
segmentation, while DUA has been shown to be effective in object detection.

Despite their great potential, CoTTA and DUA are striving for a fully au-
tonomous solution, which is suitable for applications such as self-driving cars.
However, there are some applications, such as surveillance, which usually have
a human operator overseeing the system [2]. This raises a question of whether
we should involve this operator to TTA. One benefit of human-in-the-loop TTA
is to revise the pseudo-labels used for adapting the object detector. As shown
in previous works [4,23,24], pseudo-labelling is an effective approach for domain
adaptation. However, if pseudo-labels are noisy, the object detector’s error will
accumulate, leading to a decline in the detection accuracy. Therefore, an on-line
operator can be another reliable annotator for revising pseudo-labels. Efficient
use of human contributions with minimal demands on labour cost in TTA is
thus a critical objective. Our idea is illustrated in Fig. 1.

Contributions This paper proposes the inclusion of humans in the test-time
domain adaptation. Our method, dubbed weakly supervised test-time domain
adaptation (WSTTA), uses weak labels provided by humans to guide the domain
adaptation during the testing phase. As WSTTA only requires weak labels to be
effective; its demand on labour cost is therefore minimal. Furthermore, WSTTA
is proposed to accommodate the stream setting, where each target sample is
observed only once. The experiments show that with only a few target test
images, the WSTTA outperforms existing fully autonomous solutions in standard
benchmarks. We hope that this encouraging result will motivate further research
in WSTTA.
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Table 1: A comparison of WSTTA with related approaches.

Approach Source Target Streaming Human in
data data data the loop

Unsupervised domain adaptation [5] 4 4 X

Weakly supervised domain adaptation [19] 4 4 X Provide weak labels

Test-time domain adaptation [28] X v v X

Active domain adaptation [37] 4 v X Provide full labels

Source-free active domain adaptation [22] X v X Provide full labels

Weakly supervised test-time domain adaptation X v v Provide weak labels

2 Related work

This section will review the main approaches to domain adaptation for object
detection. In addition, we will discuss the novelty of WSTTA in comparison to
these approaches, which are succinctly outlined in Table 1.

2.1 Unsupervised domain adaptation

Given a labelled source dataset and an unlabelled target dataset, UDA seeks to
adapt an object detector to perform accurately in the target domain. There are
three main techniques in UDA for object detection: adversarial learning [5,6,31],
optimal transport [20, 43|, and pseudo-labelling [23,27,34].

Adversarial learning attempts to minimise the domain discrepancy in the
feature space. To this end, domain adaptive Faster-RCNN [5] employs gradient
reversal layers [13] in their adversarial learning framework to align the feature
and instance distributions of source and target domains. This concept is further
improved in [6], which aligns the source and target distributions across different
image scales. Additionally, adversarial learning has been explored in anchor-free
object detection techniques [30,31]. In comparison to adversarial learning which
solves a minimax optimisation problem, optimal transport instead minimises
Wasserstein distance between source and target domains. For instance, [20] em-
ploys the sliced Wasserstein distance to address high-dimensional issue in the
feature space and [43] considers the duality of the Wasserstein distance, which
can be approximated by neural networks under certain conditions. Another ap-
proach that has been shown to be effective is pseudo-labelling. To generate re-
liable pseudo-labels for target dataset, [34] fuses the results of detection and
tracking as well as proposes a label smoothing technique. To further improve the
detection performance, some recent methods integrate pseudo-labelling to other
strategies. For instance, [23] incorporates pseudo-labelling to student-teacher ar-
chitecture and [27] combines pseudo-labelling with domain mixing techniques.

Despite its great potential, UDA is done offline, which is not suitable for
many practical applications dealing with streaming data. Furthermore, the need
for access to the source data can be a shortcoming in terms of privacy and
security (see Sec. 1). To address this, our WSTTA can be performed online and
is a source-free method, thus avoiding any privacy and security risks.
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2.2 Test-time domain adaptation

TTA attempts to adapt the model in an online manner without using the source
data. Some interesting TTA works include Tent [39] which proposes to up-
date batch normalisation layers using entropy minimisation, CoTTA [41] which
uses teacher-student architecture with pseudo-labelling to adapt the model, and
DDA [14] which employs diffusion models to transform the appearance of images
from the target domain to resemble the source domain. Since these methods are
only tested in image classification, DUA [28] shows that TTA can be effectively
applied to object detection by introducing a momentum decay parameter to
stabilise the domain adaptation process.

As alluded, existing TTA works aim for developing fully autonomous domain
adaptation techniques, which are useful to applications like self-driving cars.
However, there are some other applications, such as surveillance, which usually
have an operator overseeing the systems [2]. Therefore, our WSTTA proposes
to leverage this operator to generate more reliable pseudo-labels, which can be
useful for TTA.

2.3 Weakly supervised domain adaptation

Weakly supervised domain adaptation (WSDA) is an approach related to the
concept of human-in-the-loop domain adaptation for object detection. This ap-
proach involves asking annotators to provide weak labels for the target dataset
(see Fig. 1c¢). Then, domain adaptation can be done using the source dataset
with full labels and the target dataset with weak labels. Few approaches include
combining predictions of the source pre-trained detector with weak labels to gen-
erate high-quality pseudo-labels for target images [19] or minimising the domain
gap by using domain and weak label classifiers [44].

Through using weak labels, WSDA is shown to outperform UDA. However,
WSDA also suffers drawbacks similar to those of UDA, i.e., the domain adap-
tation is done offline and the need to access the source data raises privacy and
security concerns (see Sec. 1). Therefore, WSTTA is proposed to overcome these
challenges.

2.4 Active domain adaptation

Active domain adaptation (ADA) represents another approach aligned with the
concept of human involvement in the domain adaptation. The objective of ADA
is to select a subset of unlabelled target samples for manual annotation, facili-
tating domain adaptation. Early ADA methods [12,37] propose measuring the
domainness of each target sample using a domain discriminator in the adversar-
ial training framework. Bi3D [48] extends this approach to 3D object detection.
Recently, DiaNA [18] proposes to evaluate domainness and uncertainty of every
target sample through a unified metric.

While ADA shows promising potential, it operates within a framework simi-
lar to UDA, necessitating access to source data. This poses significant concerns
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Fig. 2: For an incoming target testing sample x;, WSTTA initially produces a predic-
tion g: and the operator is required to provide a weak label z; for it. Subsequently,
using the prediction §: and weak label z:, a pseudo-label y} *d is generated. Finally, the
weak label z; and pseudo-label y} sd are used as groundtruth for image-level recognition
and instance-level recognition respectively.

about privacy and security (see Sec. 1). In contrast, our WSTTA method is en-
tirely source-free, mitigating any such risks associated with privacy and security.

2.5 Source-free active domain adaptation

Source-free active domain adaptation (SFADA) [22,40] attempts to perform
active domain adaptation with the absence of the source data. Particularly,
ELPT [22] employs energy models to evaluate the free energy of each target sam-
ple. Target samples with the highest free energy levels are selected for manual
annotation. MHPL [40] selects active samples according to three characteristics:
uncertainty, diversity, and source-dissimilarity.

SFADA offers a solution that circumvents security and privacy concerns by
eliminating the need for source data in domain adaptation. However, SFADA
requires access to a pool of target data to enable the selection of a subset for
manual annotation. By contrast, our WSTTA is designed for streaming data [35,
41,46], where each target sample is observed just once for model adaptation. In
addition, to alleviate labour cost, we opt for weak labels provided by human—
different from the target subset selection process employed in ADA and SFADA.

3 Method

This section will elaborate our methodology. To begin with, Sec. 3.1 outlines the
formal problem definition. Subsequently, the WSTTA framework is presented in
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Sec. 3.2, where we will explain the loss function for domain adaptation. Given
the loss function, we will discuss how the domain adaptation can be achieved
via updating batch normalisation (BN) layers in Sec. 3.3.

3.1 Problem Formulation

Let f(-; 69) with parameters 6y be an object detector that has been trained on
the labelled source dataset (X S, ys), where X and ) are the sample space and
label space. During its operation, the detector will carry out the online inference
and adaptation on the unlabelled target data XT. Specifically, at time step ¢,
the target data x; € X'T is given as an input to the detector f(-; ;). Then, the
detector f(-; 6;) must make an inference §; = f(x¢;0;) and adapt itself 8; — 0;41
for the next input x;1. The detector’s performance is evaluated based on the
predictions ¢; from the online inference.

It is noteworthy that this streaming setting closely aligns with existing lit-
erature [35,41,46]. Furthermore, it is recommended that x; should be deleted
immediately after the adaptation to safeguard the privacy [46].

The impetus for online adaptation is derived from practical scenarios in which
perception systems are constantly operating in ever-evolving environments, with
input coming in the form of streaming data. Moreover, previous studies [14,28,41]
have mainly focused on developing fully autonomous TTA solutions for applica-
tions such as self-driving cars or autonomous robots. However, in certain appli-
cations, such as surveillance, a human operator is usually needed to supervise
the system [2]. Therefore, our idea is to involve the operator in TTA. Specifically,
let C be a set of L object categories. For each target image x;, the operator will
provide a weak label z; = {¢; }j”il, where ¢; € C is the object category present
in the image and M denotes the total number of object categories in the im-
age; see Fig. 1c. This weak label z; will then be leveraged to adapt the object
detector’s parameters 6, — 6.1 for the next input. As discussed in previous
works [3, 38, 49], providing weak labels instead of full labels will significantly
reduce the amount of labour required.

3.2 Framework

The overview of WSTTA is shown in Fig. 2. Specifically, for the model f(-; 6;),
WSTTA adopts a two-stage object detection architecture Faster-RCNN [33] that
includes a backbone, a region proposal network (RPN), and a detection head
(ROTI Head). Our WSTTA consists of three main components: pseudo-labelling,
image-level recognition, and instance-level recognition.

Using the prediction g; and weak label z;, pseudo-labelling will generate a
pseudo-label 37 45 The pseudo label and weak label will be used to construct loss
functions £i"® in instance-level recognition and £;™® in image-level recognition.
The final loss for domain adaptation will be

Ly=LP + L™ (1)
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This loss £ will be used to update Faster-RCNN’s parameters 8; — ;1 for the
next input z;41 (see Sec. 3.3). In this section, we will outline each component:
pseudo-labelling, image-level recognition, and instance-level recognition.

Pseudo-labelling The target image z; is initially given to the operator and
the operator must provide a weak label z;. Then, WSTTA makes a prediction
g = {Bi,éi,ﬁi}fil = f(at; 0:), where b; € R? is the predicted bounding box,
¢; € C is the predicted object category, p; € R is the probability that b; belongs
to ¢;, and N is the total number of predicted bounding boxes. Note that ;
is obtained after excluding overlapping boxes by non-maximum suppression for
each object category.

However, the prediction g; may contain mistakes, i.e., bounding boxes with
incorrect object categories. If we use g; as the groundtruth to adapt 6;, the errors
will accumulate over time, leading to a decrease in the detector’s performance.
To minimise these errors, we will create a pseudo-label 4} sd by keeping bounding
boxes of ¢; such that their object categories are present in the weak label z; and
their predicted probability is greater than 0.8

nyd = {Bi,éi | Bi,éi,ﬁi S :l)t and p; > 0.8 and ¢; € Zt} (2)
These pseudo-label y¥ sd and weak label z¢ will be respectively used as groundtruth
in the instance-level recognition and image-level recognition.

Image-level recognition This component aggregates the outputs of RPN and
ROI head to obtain an image-level prediction, which is used to calculate the
image-level loss £;™8. This aggregation operation is developed based on the idea
of weakly-supervised object detection [1,44]. Recall that L is the total number
of object categories, we denote K as the total number of proposals, the output
of RPN as o € R and the output of ROI Head as C € REXL,

Firstly, we create a matrix O that has a same size as C

[o], if !'=argmax[C],
[O]k,l’ = t (3)

0 otherwise

lth

where, [-],. ; denotes the element in the row k" and column I'" of a matrix, and

[],, denotes the k' element of a vector.
Next, the softmax is applied on C and O

[o(C)] o)) Ol (4)
g = — T~ g =
kil Zlel e[C]k,z kil Z?:l e[o]k,l

Then, the image-level prediction 2, € R” is calculated

&), =Y [0(©) 00 (0)],, (5)

k=1
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Finally, the image-level loss can be obtained via the standard cross-entropy
function

L™ — cross_entropy_loss (2, multi_hot (z)) (6)

where, multi_hot(-) is a function to convert z; into a multi-hot vector of size L.

Instance-level recognition This component will employ the pseudo-label 37 sd

from Eq. (2) as the groundtruth. The instance-level loss is formulated as follows

L = L3 (2, yP*) + Lo (e, yP™) (7)
where, £ and L] are the classification losses of RPN and ROI Head proposed

in standard Faster-RCNN [33]. Here, the instance-level loss £ ignores the
bounding-box regression task since the pseudo-label 7 sdin Eq. (2) indicates
the confidence score of predicted bounding boxes. Thus, the parameters 6; are

adapted to enhance the classification performance of the detector.

3.3 Domain gap minimisation via updating batch normalisation

Given the final loss from Eq. (1), we need to adapt 6; — 6;; for the next input
Zy1- We choose to update all BN layers in 6 as this has been shown to be highly
effective in recent studies [28,36,39]. The rationale of updating BN layers is to
reduce the covariate shift between the source and target distributions [36]. If
the target distribution is different from source distributions, BN’s parameters
estimated from the source distribution are no longer normalising the target data
as expected. Therefore, it is necessary to update BN layers with the new target
distribution.

Specifically, for an arbitrary BN layer of 64, let s and o, be its running mean
and running variance, and also let 74 and (; be its transformation parameters.
We also denote m; as its momentum (mg is set to 0.1 by default). As shown
in [28], if the momentum is gradually decayed, it will stabilise the convergence
of the domain adaptation. Therefore, we initially decay the momentum

my = mp_1.wW + ) (8)

where, w € (0,1) is a predefined decay parameter and ¢ defines the lower bound
of momentum.
Subsequently, BN’s parameters will be updated as follows

pirr = (L —mg).pg +m.fi, orp1 = (1 —my).o¢ +m.6y, (9)
oL oL
Vi1 = Ve + )\877:’ Br+1 = Pt + )\Biﬁ:’ (10)

where, X is the step size of gradient update and [z and & are mean and variance of
the current input data. Note that the previous work [28] only updates u; and oy
while our method can also update transformation parameters v; and (;, thanks
to weak labels provided by the operator.
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4 Experiment

(a) Visible images

' -n
-3

(b) Infrared images

Fig. 3: Sample images of our MSA-SYNTH dataset, where we simulate different envi-
ronmental conditions.

4.1 Setup
The following benchmarks are used in the experiment.

— KITTI — KITTI-Fog: KITTI [15] is a widely-used dataset in autonomous
driving. KITTT is used to pre-train the model, which are then adapted to the
target KITTI-Fog with the most severe fog level 30m visibility [16]. Object
categories taken into account are “Car", “Pedestrian", and “Cyclist". A total
of 7481 images are randomly divided into 3740 for training and 3741 for
testing.

— Cityscapes — KITTI: Cityscapes [7] is another popular dataset in self-
driving cars. We pre-train the object detector in Cityscape, then adapt it
to KITTI. Three object categories in Cityscapes are used: “Car", “Pedes-
trian", and “Rider". Similarly, three object categories in KITTI are used:
“Car", “Pedestrian", and “Cyclist". A total of 3475 Cityscapes images from
its training and validation sets are randomly divided into 1737 for training
and 1738 for testing. Similarly, a total of 7481 KITTI images are randomly
split into 3740 for training and 3741 for testing.

— Visible — Infrared *: We use Unreal Engine ° and Infinite Studio ° to gen-
erate a maritime dataset MSA-SYNTH. Three boat/vessel categories “Fish-

ing", “Sailing", and “Passenger" are simulated. We collect 8147 visible images

4 We will release the dataset after the review; subject to all internal approvals.
5 https://www.unrealengine.com/
6 https://infinitestudio.software/
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and 8147 infrared images, which are then divided into 4243 visible images
for training, 3904 visible images for testing, 4243 infrared images for train-
ing, and 3904 infrared images for testing; see Fig. 3 for sample images. The
model will be pre-trained in the source domain “Visible", then adapted to
the target domain “Infrared".

We consider following baselines

Table 2: Comparing AP50 within each ob-
ject categories and mAP across all cate-
gories between WSTTA and other baselines
(larger is better)

— Source: The source pre-trained
model is tested on the target data
without any adaptation.

— BN stats: BN stats [36] adapts

. Pedes- .
the source pre-trained model by Car trian  CYclist mAP
updating the statistics of batch g .. 23 4 26.7 124 209
normalisation (BN) layers. BN Stats 41.3 41.4 20.8 34.5
. DUA 41.3 41.8 21.3 34.8
— DUA: DUA [28] introduces a decay  ygrra 446 119 531 365
factor to update the momentum —+— e e o83 —_

parameters of the BN layers of the

. (a) KITTI — KITTI-Fog
source pre-trained model.

— Oracle: The source pre-trained Podes-
. . . Car . Cyclist mAP

model is fine-tuned in 120k iter- trian
ations on the target training set  Source  66.9 46.4 9.0 40.8
ith full supervisio BN Stats 68.1 50.1 12.3 43.5
With ull Sup€rvision. DUA 68.1 50.3 127 437
WSTTA 68.1 51.5 14.3 44.6
where, BN stats [36] and DUA [28] are  —————— e > o4

fully autonomous adaptation meth-

. L. b) Cityscapes — KITTI
ods which use BN update to minimise (b) Cityscap

the domain gap. Source and Oracle Fish- - Passen-
. . Sailing mAP
provide the lower-bound and upper- ing ger
bound performance. Source  42.4 15.6 33.5 30.5
BN Stats 43.8 14.8 37.0 31.8
To reduce labour C(?St, our WSTTA [, 116 151 370 399
uses 100 target testing images for  wsTTa 54.7 21.1 36.2 37.4
adaptation in all benchmarks, un-  oracie 69.9 39.2 72.8 60.6
less otherwise stated. For baselines, (c) Visible — Infrared

all target testing images are used for
adaptation since they are fully au-
tonomous adaptation techniques. Following the streaming setting [35, 41, 46],
each target testing image is given to each method one at a time to perform
domain adaptation.

To measure object detection performance, we present the average precision
with a threshold of 50% (AP50) for each object category and the mean average
precision (mAP) across all object categories.

4.2 Implementation

We employ Detectron2 [42] for implementation. Faster-RCNN with backbone
ResNet-50 [33] is pre-trained on the source dataset with a batch size of 2. Learn-
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ing rate is initially set to 0.001 for the first 30,000 iterations, then reduced to
0.0001 for the remaining 90,000 iterations.

For WSTTA, unless stated otherwise we set w = 0.99 for KITTI — KITTI-
Fog and Cityscapes — KITTI, and w = 0.94 for Visible — Infrared. For re-
maining parameters, unless stated otherwise we set learning rate A = 0.0001,
6 = 0.005, and a = 0.1 for all benchmarks.

4.3 Results

Benefits of human guidance in TTA As shown in Table 2, the fully au-
tonomous TTA methods BN Stats and DUA outperforms Source by 11%-14%
mAP in all benchmarks.

When human guidance is incorporated into the TTA, WSTTA increases mAP
by 4% mAP in Visible — Infrared and 1% in KITTI — KITTI-Fog and Cityscapes
— KITTI, compared to BN Stats and DUA. The improvement is even more
significant for certain object categories. For instance, WSTTA improves “Car” in
KITTI — KITTI-Fog, “Cyclist” in Cityscapes — KITTI, and “Fishing” in Visi-
ble — Infrared by about 3.3%, 2%, and 10% respectively, compared to BN Stats
and DUA.

BN Stats and DUA only updates
the running mean and variance us-
ing Eq. (9) while WSTTA also performs cor | Clles- Cyelst
the gradient update on transforma- &2
tion parameters using Eq. (10). The _ 33\‘32: 1 O ].
improvements shown in Table 2 sug- s A / cimulate
gest that the loss £; of Eq. (1) con- - lnoisv label
structed by using weak labels signif- e
icantly enhances the TTA’s perfor-
mance.

noise ratio = 70% -

30%

. . Fig. 4: Illustration of how noisy weak labels
Effects of noisy weak labels This are simulated. Given a weak label {Car, Cy-

experiment examines the possibility of clist}, a corresponding multi-hot vector is

humans providing incorrect weak la-  created. If the noise ratio is 70%, the value
bels. To simulate this, each element in 1 in “Car" element will have the 70% prob-

the groundtruth multi-hot vector has ability of being switched to 0, while having
a probability of being switched to an the 30% probability of remaining 1. A simi-
incorrect value. This probability is re- lar operation is applied to elements “Pedes-
ferred to as the noise ratio. An exam- trian" and “Cyclist".

ple of this simulation is shown Fig 4.

The results are shown in Fig. 5. In

general, WSTTA can be seen to be sensitive to noisy labels.

At a noise level of 50%, the performance of WSTTA decreases by about 1%
in the “Car” and “Cyclist” categories in the KITTI — KITTI-Fog benchmark.
A similar 1% drop is observed in the “Pedestrian” and “Cyclist” categories in
the Cityscapes — KITTI benchmark. However, the most significant decrease is
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seen in the Visible — Infrared benchmark, where the accuracy of the “Fishing”
category decreases by 6% and that of the “Sailing” category drops by 2.5%.

When the noise ratio is increased to 99%, the performance of WSTTA in
KITTI — KITTI-Fog reduces by 6% and 3% in the “Car” and “Cyclist” categories
respectively. Similarly, there is a significant decrease of 6% and 5% in the “Car”
and “Pedestrian” categories in Cityscapes — KITTI. The most dramatic decline
is observed in Visible — Infrared, where the performance of WSTTA drops by
more than 8% and nearly 5% in the “Fishing" and “Sailing".

70 : 704 70
60 - 1 60| 1 60| N
50 - 1 o ————— | 50 \
— o
< 40 —— < 40 b < 40| b
< 30| 1 < 30| {—e= Car , < s0f ,
—»— Pedestrian
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(a) (b) (c)

Fig.5: Effects of noisy weak labels to WSTTA are shown on benchmarks (a)
KITTI — KITTI Fog, (b) Cityscapes — KITTI, and (c) Visible — Infrared.

The results in Fig. 5 shows that using only 100 images (~2.5% of data) with
noisy weak labels for domain adaptation will lead to the incorrect calculation of
loss £ in Eq. (1), resulting in significant drop in object detection’s performance.
This indicates that weak labels provided by human have a substantial impact
on the TTA’s performance.

Effects of sample orders This experiment investigates the effects of sample
orders. The result on KITTI — KITTI-Fog in shown in Fig. 6a, where we conduct
30 independent runs and calculate the mean and standard deviation of mAP. For
each run, the order of samples is randomly shuffied. In the first few samples used
for adaptation, the standard deviation is large. For example, with 100 samples,
we obtain mAP of 36.0 £ 0.6. When the adaptation samples increase, the mAP
continues to improve as well as the standard deviation decreases. For instance,
the mAP achieves 39.8 4+ 0.5 at 600 samples and 40.2 £+ 0.4 at 1000 samples.
However, the mAP saturates at 40.0 after 700 samples.

The small values in standard deviation indicate that sample order does not
significantly affect WSTTA. Additionally, using more samples for domain adap-
tation significantly improves object detection performance but also increases
labour costs. However, the improvement saturates after a certain number of
samples, likely because the domain gap has been minimised at the batch nor-
malization layers.
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Fig. 6: (a) WSTTA results on KITTI — KITTI-Fog for 30 independent runs. For each
run, the order of KITTI-Fog testing samples is randomly shuffled. (b) WSTTA results
on KITTI — KITTI-Fog for different decay factors.

Effects of decay factors We investigate the effect of the decay factor w on
the performance of WSTTA on the KITTI — KITTI-Fog benchmark. Fig. 6b
shows the results when different decay factors w from 1.0 (no decay) to 0.91
are applied. We observe that when w is set to 0.99 or 0.97, the mAP is better
than that of w = 1.0, indicating that decaying the momentum accelerates the
convergence of domain adaptation. However, if the momentum decays too quickly
(i.e. w < 0.97), the detection accuracy decreases.

As shown in [28], decay factor is necessary to stabilise the domain adapta-
tion. However, if it is set too small or too large, the minimisation process of the
domain gap will take longer time to converge to local minima, leading smaller im-
provements in object detection performance. This suggests that tuning the decay
factor is essential for achieving satisfactory domain adaptation performance.

5 Conclusion and future works

Conclusion This paper presents a method involving a human operator in TTA.
The algorithm only requires the operator to provide weak labels for images, which
are then used to guide the adaptation process. The experiments show that the
proposed method outperforms existing autonomous test-time adaptation solu-
tions, demonstrating great potential of human guidance for TTA.

Future works A promising future work is to examine the question “when to
adapt?" in the WSTTA framework. This aspect has recently captured the at-
tention of the community [10,47]. Additionally, investigating various approaches
to minimise the domain gap in TTA settings, such as optimal transport [8] or
maximum mean discrepancy (MMD) [45], holds great potential. Recent work
has demonstrated that simply minimising the distances of means and variances
between source and target domains can be an effective strategy in TTA [29].
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Another interesting direction is to develop more effective interfaces for human
interaction with AT models during TTA, as well as establish appropriate metrics
to measure the cognitive workload of humans during this process.
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